

Automation with Vampire A case study on wagon imbalanced loading

Vampire User Day

16th July 2020

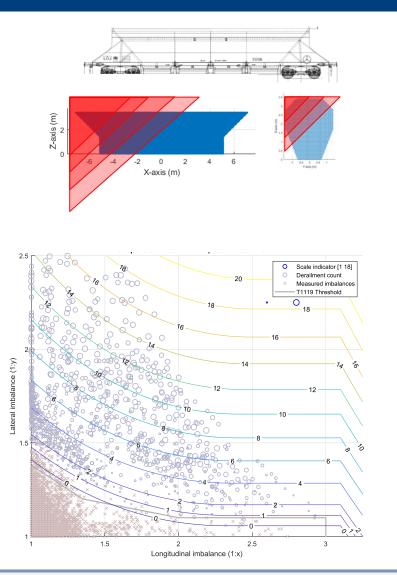
Phil Shackleton

A need for automation

University of HUDDERSFIELD

- Repetitive tasks
 - Large number of cases
 - e.g. parametric study
 - Longer term efficiency
 - Multiple occasions/repeat jobs
 - Repeatability
 - Reduced user error
- Vampire includes tools...
 - Command file
 - *PARAMETER
 - Task files .vtf*
- Here we take a look at some of those and other possibilities beyond

🔚 GMRT	T2141_YQ_YSeries8p	5_H_Veh_001.vac	×						
1	[Header]								
2	<pre>FileType = VampireCommandFile</pre>								
3	[Commands]								
4	TaskNumberOff								
5	; ******								
6	<pre>\$vehicle\$ =///VLIB/YSeries8p5 H Models/YSeries8p</pre>								
7	<pre>%dt_1p4f% = 0.0005</pre>								
8	; *****								
9	File =///Templates/AppC YQ template.run								
10	<pre>%flead% = 10.6572</pre>								
11	<pre>%ftrail% = 10.65</pre>								
12	; ***** 11	****	******	*******	*****	*			
13	<pre>%irreg¹²</pre>	*PARAMETER			*****				
14	<pre>% 13 % design 14</pre>	**							
15	<pre>%profil¹⁵</pre>	BogSe	mSpac =		8.0				
16	%gauge f 16	BogSe BodyM	mWhl = ass =		1.3 30.0				
17	Replace 18	BodyI			35.0				
18	Task = 19	BodyI			1000.0				
19	GO 21	BodyI	zz = osX =		1000.0 -0.5				
20	; ***** 22		osY =		-0.15				
21	<pre>%irreg^{1 23}</pre>	BodyP	osH =		1.57				
22	%desigr ₂₅	**	E CSVEx	oort.vtfEXP 🔀					
23	<pre>%profil²⁶</pre>	*MASS	1	[Applica	tion]				
24	Sgauges 27	***********	2	ProgramN	ame=Export Utility				
25	Replace 29	INERI	3	[Export]					
26	Task = 30	M1 POSIT			=%RunFileName%				
27	31 Go		6		=5.0				
28	; ********	*********	7	Conditio	n=Variable				
29	<pre>%irreg% = .</pre>	.////	8	Line1	=1)C			
30	<pre>%design% =</pre>	///	9		=2 =3				
31	<profile% =<="" pre=""></profile%>		10	Line3	-5				
32	<pre>\$gauge% = 9</pre>		12	Line5	=5				
33	ReplaceTo =	V-YSeries8	13						
34	-	eries8n5 H 1	14	[Output]					
			15	Type	=Ascii =Auto				
				- OTMAT	EAUTO				



Case study context

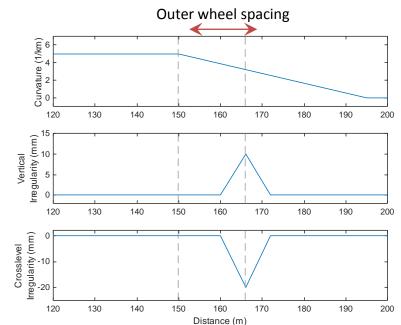
- Influence of imbalance loading on derailment risk
 - Study was carried out through several projects from 2017 to 2019
- Container and bulk wagons
 - 1950 payload cases
 - 8 different wagon/suspension types
 - Circa 7000 individual vehicle models
 - Simulation cases:
 - Wheel unloading
 - Bogie rotational resistance
 - Resistance to flange climb
 - Total of around 140,000 simulations
- Output trend between imbalance and derailment resistance

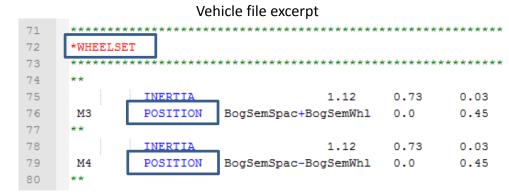
Vehicle model configuration

- A range of payloads
 - Include effects on suspension characteristics and initial conditions
- *PARAMETER
 - For a parametric study model values can be changed using vac ReplaceTo
- Vehicle models are text so generation is straightforward
 - Write whole vehicle file or update *PARAMETER section
 - Excel, Matlab, Python, batch file etc.

			11	*****	*****	********	********	********	***			
			12	*PARA	METER	£						
			13	*****	*****	********	********	*********	***			
			14	**								
			15			BogSemSpac	=	8.	0			
			16			BogSemWhl	=	1.	3	1		
			17			BodyMass	=	30.	0			
			18			BodyIxx	=	35.	0			
			19			BodyIyy	=	1000.	0			
			20			BodyIzz	=	1000.	0			
			21			BodyPosX	=	-0.	5			
			22			BodyPosY	=	-0.	15			
			23			BodyPosH	=	1.	57			
			24	**								
			25	****	*****	********	********	********	******			
			26	*MASS								
			27	*****	*****	********	********	********	*********	*******		
			28	**								
			29			INERTIA	BodyMass	BodyIxx	BodyIyy	BodyIzz		
			30	M1		POSITION	BodyPosX	BodyPosY	BodyPosH			
			31									
			А	E	3	с	D	E	F	G	н	1.1
	25	****				*********						
	26	-										
	27	****	*****	*****	*****	*********	********	********	*****			
	28	**										
	29			INERT	1A	30	=1/12*C29*	(G31-D31)^2	2+(H31-E31)^	2)		
	30	M1		POSIT		-0.5		1.57		-/		
		IVIT			ION					1.05	0.57	
	31	-		SIZE		-11.5	-1.35	1.02	11.5	1.35	3.57	
	32											
	33											
												_
		Ŧ										
10-								Course Ch	- 44 -			
(Gei	nera	1)					~	SaveShe	eetAs			
	<pre>Sub SaveSheetAs() Dim wb As Workbook ' Disable saving prompts (overwrite etc.) Application.ScreenUpdating = False Application.DisplayAlerts = False ' Get current workbook path homeDir = ActiveWorkbook.Path ' Loop through all the vehicle models For iCounter = 1 To 248</pre>											

Sheets("Input Data").Range("C6").Value = iCounter


Institute of Railway Research


University of HUDDERSFIELD

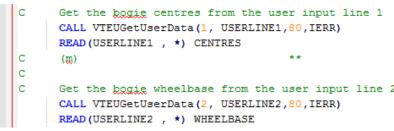
Simulation environment

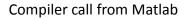
University of HUDDERSFIELD

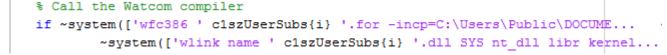
- Track file generation
 - E.g. dip position on Y/Q assault course
 - Vehicle model files can be read as easily as written
 - Identify ***WHEELSET** and POSITION
 - Extract required dimensions
 - Vehicle type specific track files can be written as .dat or .csv

Simulation environment

University of HUDDERSFIELD


Institute of Railway Research


- Usersub e.g. used to simulate laboratory tests
 - Wheel unloading and rotational resistance
 - Where case specific Usersub parameter is needed
 - *USER lines in run file
 - Values could be read from vehicle file
 - Where the Usersub function changes
 - Source code is written programmatically
 - Compiler called (with switches and dependencies) to generate Usersub.dll on the fly


15	*CREEP
16	****
17	
18	**
19	*USER
20	** Bogie pivot spacing read by usersub (m)
21	8.5
22	** <u>Bogie</u> wheelbase read by <u>usersub</u> (m)
23	1.83
24	*OUTPUT
25	****
26	
27	**

Run file excerpt

Fortran Usersub source code

93

94

95

96

97

98

99

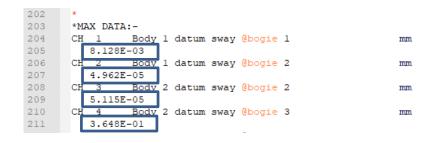
Running simulations

۲

Global **Teaching Excellence** Award

- Vampire solvers can be launched from the command line
 - Programmatically e.g. with 'system' call (from Matlab) or equivalent
 - Call the transient solver with a [transient] run file
 - Call the command processor with a vac file

Command Prompt :\Users\Staff>start "Vamp Analysis" "C:\Program	n Files	(x86	$\hat{\mathbf{N}}$
AMPIRE\VAMPIRE Pro 6.60\Command\CommandProcess command\file\path\commandFile.vac" /st "working	or.exe"	/b /·	f
:\Users\Staff>_			


- Parallel processing (without Run Control)?
 - Launch multiple instances
 - Query the number of processes running from the OS [e.g. with 'tasklist' on windows]
 - Manage CPU load within a logic loop and maximum number of instances

:\Users\Staff>tasklist	findstr CommandProcessor.exe			
ommandProcessor.exe	22200 Console	8	15,776 K	
ommandProcessor.exe	19044 Console	8	15,360 K	
ommandProcessor.exe	12768 Console	8	15,312 K	
ommandProcessor.exe	14432 Console	8	15,292 K	
:\Users\Staff>				

TEF

Reading results

- Thousands of .out files alone are not so useful...
- lis and log files are text and can be parsed
 - E.g. extract warnings and lis file statistics
- out files are binary, but 32 bit floating point data can be read
 - Matlab, Python, Excel macro
- Alternatively, use vtfexp to convert out files to csv in the command loop

E CSVE	xport.vtfEXP 🗵					
1	[Application]					
2	ProgramN	ame=Export Utility				
3						
4	[Export]					
5	RunFile	=%RunFileName%				
6	Speed	=5.0				
7	Condition=Variable					
8	Line1	=1				
9	Line2	=2				
10	Line3	=3				
11	Line4	=4				
12	Line5	=5				
13						
14	[Output]					
15	Type	=Ascii				
16	Format	=70+0				

Summary

• Vampire includes a range of tools to assist automation

72

73

74 **

75

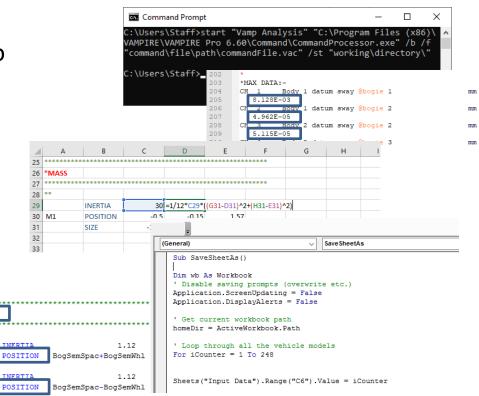
76

78

79

80

*WHEELSET

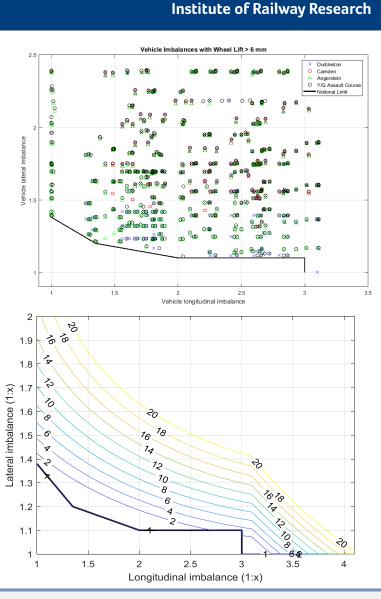


M3

Μ4

**

- The Vampire file types and installation allows many more possibilities for user automation
- Powerful toolboxes can be built to
 - Expand parametric studies
 - Improve repeatability
 - Streamline repetitive tasks



Summary

- Such tools were used to investigate the influence of imbalanced loading on derailment resistance
- Trends observed used to define:
 - Low derailment 'threshold'
 - Derailment risk score
- Metrics are included in NR imbalance reports to help freight operators manage risk
- Threshold informed new testing conditions for intermodal wagons in GMRT2141 issue 4

University of HUDDERSFIELD

Questions...

