

Modelling a vehicle to vehicle collision in Vampire

Vampire Virtual User Event - 14th June 2022

Philip Rogers, Technical Director, Technical Services

Introduction

- Vampire longitudinal dynamics allows vehicle models to change speed
- In fact, parts of a model can change speed relative to each other
- The parts of the model can then collide so could we model two trains colliding and potentially derailing?

Vehicle model

- Multi-vehicle model based on FouraxPro representing two trains separated by 17m
- Produced by Cloning the vehicle in the IVB:
 - Add the whole vehicle except ground stiffness and damper to a group
 - Clone the group
- > 2 vehicles in leading train, 4 in following train
- End vehicles have increased mass to represent the rest of the train

⊡. Demo1
···· Assembly Properties
🕂 ·· Parameters
Part File References
Local Axes
L - Pinlinks
K - Stiffness Elements
⊕ C - Dampers
<u></u> LV01
⊡. Bogie 1
M - Masses
W - Wheelsets
H. A - Airsprings
H-L - Pinlinks
H-P - Busnes
K - Stiffness Elements
Bogle2
B - Promitiks
Elements
E - Dampers

Vehicle model

- Simple Pinlink couplers added
- Long Bumpstops and Friction elements allow collision
 - Notional characteristics at this stage
 - > 17m clearance!
- > Note: Wheelset pitch inertia has to be added manually to text file
- Very soft stiffness to ground on leading train (to prevent it being dragged by the accelerating axis system

Demo1
···· Assembly Properties
🛓 ·· Parameters
Part File References
···· Local Axes
i∰…L - Pinlinks
i - K - Stiffness Elements
🖻 LV01
i ·· M - Masses
🚍 · Bogie 1
M - Masses
W - Wheelsets
🗄 ·· S - Shearsprings
🗄 ·· A - Airsprings
🗄 L - Pinlinks
😟 P - Bushes
Bogie2
M - Masses
😟 W - Wheelsets
🗄 S - Shearsprings
🗄 🗛 - Airsprings
🗄 🗉 L - Pinlinks
i P - Bushes
K - Stiffness Elements
C - Dampers
i TV1
i∰. TV2
i TV3
. TV4

Vehicle model

How to model offset wagon loads in Vampire; 14th June 2022; Owen Evans

8-8

Run file

- Simulation of two trains colliding following train accelerates into leading train
- Uses longitudinal dynamics
- External yaw torques applied with forcing file

Run file sections

***TRANSIENT** DISTANCE 200.00 INTEGRATE 0.00010 OUTPUT 0.02000 STARTOUTPUT 0.00 SPEEDMPH 5.000 TRACKIRREGULARITY track160.dat ALLOWDERAIL *CREEP **NON-LINEAR** PROFILE CEN56E1-20 P8 127.con FRICTION 0.30000 0.30000 0.30000 0.30000 0.30000 0.30000 **

*XDYNAMICS CURV_RESISTANCE **

** Forcing file includes traction followed by braking
*FORCE
F \TV2\Bogie1\W\Wheelset1 P
FILE Force1.csv
CHANNEL 1

FACTOR 6.0 **TIMEDELAY 10 F \TV2\Bogie1\W\Wheelset2 P FILE Force1.csv CHANNEL 1 FACTOR 6.0 **TIMEDELAY 10

F \TV2\Bogie2\W\Wheelset3 P FILE Force1.csv CHANNEL 1 FACTOR 6.0

Forcing file - .csv

FORCE

UNITS VAMPIRE

Acceleration and braking for collision example - apply factor in run file (Neg torque is traction)

TIME, CH1 0.00, 0.000

10.00, 0.000

10.10, -1.000

22.50, -1.000

22.60, 0.000

22.70, 1.000

50.00, 1.000

Vampire Plot

How to model offset wagon loads in Vampire; 14th June 2022; Owen Evans

Results – vehicle speeds

Vampire Plot

9

Results – carbody yaw

Vampire Plot

10

Result – Wheel/rail shifts, showing derailments

How to model offset wagon loads in Vampire; 14th June 2022; Owen Evans

Result – Vehicle positions, showing derailments

How to model offset wagon loads in Vampire; 14th June 2022; Owen Evans

Conclusions

- Simulation method works as 'proof of concept'
- Would need force/displacement characteristics of vehicle ends and couplers for definitive test
- Could Usersub version run 'in the loop' with a more complex collision model?
- Could be applied to 'rough shunt' time cases

Thank you

